NEW B FRAGMENTATION MEASUREMENTS AT LEP/SLD AND THEIR IMPLICATIONS FOR TEVATRON PHYSICS

Kristian Harder, Kansas State University

11 March, 2003

Overview

🌟 b physics at the Tevatron

 \blacktriangleright b fragmentation measurements at LEP/SLD

How is this related?

aim:

Demonstrate impact of the recent LEP/SLD b fragmentation measurements on Tevatron physics —

these measurements are not only relevant for old-fashioned e^+e^- colliders!

Overview

🌟 b physics at the Tevatron

 \blacktriangleright b fragmentation measurements at LEP/SLD

How is this related?

Disclaimer:

 $KH \in D0$ masthead

KH ∉ D0 author list

Guess why?

The statements on Tevatron physics in this talk are outside non-expert views! Important oversights, misconceptions etc. are to be expected!

b Physics at the Tevatron

PLUS: b physics as a tool for "heavier" topics

How can LEP/SLD measurements help?

Example: b production cross-section as measured in Tevatron Run I (left: D0 and CDF; right: CDF, hep-ph/0111359):

Is this new physics or a systematic bias?

LEP/SLD can help to understand this due to simpler event structure

Prediction of b production cross-section at the Tevatron:

ightharpoonup Structure functions ightharpoonup specific number of b's at specific energy

ightharpoonup Hadronisation effects ightharpoonup shift b energies downward

Efficiency

→ usually depends on energy distribution!

 \blacktriangleright Structure functions \rightarrow specific number of b's at specific energy

→ usually depends on energy distribution!

These two are collider-/detector-specific. No good topic for this talk.

 \bigstar Hadronisation effects \rightarrow shift b energies downward

This is presumed to be universal! Let LEP/SLD help.

If hadronization effects are a problem, the cross-section over the jet momentum should show better agreement than the cross-section over the b hadron momentum.

This seems to be the case! → look at LEP/SLD

D0, hep-ex/0008021

factorisation at arbitrary boundary!

perturbative

This part shouldn't

non-perturbative

PLAN

👉 constrain hadronisation at LEP/SLD

results into models for the Tevatron

see what happens

This has been done before!

Old and very simple measurements, only part of the LEP/SLD dataset

...maybe we should try again?

LEP/SLD did it again!

New round of b fragmentation/hadronisation measurements 2000–2003

Use as input for Tevatron physics is only one benefit. True egoistic motivation:

 \blacktriangleright hadronisation effects are huge systematic uncertainty at LEP/SLD

the origin of mass!

non-perturbative QCD accounts for almost all visible mass in the universe, not the Higgs!

Quantitative description of hadronisation

consider energy fraction transferred from quark to hadron

hadronisation models describe f(z):

$$z = \frac{\text{energy of primary hadron}}{\text{energy of quark prior to hadronisation}}$$

model-dependent, not a nice observable!

f(z): fragmentation functions (should be: "hadronisation functions")

Peterson et al.

$$f(z) \propto rac{1}{z(1-rac{1}{z}-rac{arepsilon}{1-z})^2}$$

→ estimation of transition matrix element by energy difference

Collins/Spiller

$$f(z) \propto (rac{1-z}{z} + rac{(2-z)arepsilon}{1-z})(1+z^2)(1-rac{1}{z}-rac{arepsilon}{1-z})^{-2}$$

→ from correspondence to heavy meson structure functions

Kartvelishvili et al. $f(z) \propto z^{lpha} (1-z)$

→ from correspondence to different model of heavy meson structure functions

Lund symmetric

$$f(z) \propto rac{1}{z}(1-z)^a \exp(-rac{bm_t^2}{z})$$

→ symmetry wrt. start of string hadronisation at either end of the string

Bowler

$$f(z) \propto rac{1}{z^{1+bm_t^2}} (1-z)^a \exp(-rac{bm_t^2}{z})$$

ightharpoonup constant probability per length and time for $q\overline{q}$ creation on the string

 $z = \frac{\text{energy of primary hadron}}{\text{energy of quark prior to hadronisation}}$ not directly measureable:

- energy of quark prior to hadronisation (after fragmentation) not observable
- further problem: b hadron easily identified in weak decay (lifetime, mass)
 but: weakly decaying hadron ≠ primary hadron
 frequent creation of excited hadrons + cascade decays

Alternative variable: x_{wd}

$$z = \frac{\text{energy of primary hadron}}{\text{energy of quark prior to hadronisation}}$$

replace:

primary hadron

→ weakly decaying hadron

quark energy prior to hadronisation

 \rightarrow energy at $q\overline{q}$ creation (at 90 GeV: \approx beam energy)

$$x_{wd} = rac{ ext{energy of weakly decaying hadron}}{ ext{beam energy}}$$

"scaled energy"

measure energy distribution of weakly decaying hadrons correspondence to hadronisation model: Monte Carlo

Typical measurements of the B hadron energy distribution

reconstructed B hadrons	data sample	energy resolution
exclusive semileptonic decays $(B \rightarrow D^{(*)} \ell \nu)$	small	pprox 5%
inclusive semileptonic decays $(B \rightarrow \ell + X)$	large	>10%
inclusive (decay vertices etc.)	very large	pprox 10%

total number of B hadrons created at LEP: \approx 2 million per experiment

SLD: \approx 0.2 million

(TESLA GigaZ: several 100 million)

examples: recent measurements of the mean scaled energy $\langle x_{wd} \rangle$:

$$\begin{array}{ll} {\rm B} \!\!\to\! {\rm D^{(*)}}\ell\nu & {\rm ALEPH~2001} & \langle x_{wd} \rangle = 0.716 \pm 0.006(stat) \pm 0.006(syst) \\ {\rm B} \!\!\to\! \ell \!\!+\! {\rm X} & {\rm OPAL~1999} & \langle x_{wd} \rangle = 0.709 \pm 0.003(stat) \pm 0.013(syst) \\ {\rm inclusive} & {\rm SLD~2002} & \langle x_{wd} \rangle = 0.709 \pm 0.003(stat) \pm 0.004(syst) \end{array}$$

LEP/SLD b fragmentation analyses

To be presented here:

ALEPH: Phys. Lett. **B512** (2001) 30.

SLD: Phys. Rev. **D66** (2002) 092006, Erratum ibid. **D66** (2002) 079905.

OPAL: hep-ex/0210031, submitted to Eur. Phys. J. C

DELPHI: DELPHI 2002-069 CONF 603. (preliminary)

ALEPH: B meson reconstruction

exclusive B meson decays:

$$B \to D^{(*)} \ell \nu$$

- ℓ : either e or μ
- five D^(*) channels:

$$D^{*+} \rightarrow D^{0} \pi^{+},$$

$$\downarrow \rightarrow K^{-} \pi^{+}$$

$$\downarrow \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$$

$$\downarrow \rightarrow K^{-} \pi^{+} \pi^{0}$$

$$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$$

$$D^{0} \rightarrow K^{-} \pi^{+}$$

• ν energy := missing energy

B energy resolution: 3-5% ≈ 3400 candidates

SLD: inclusive B hadron reconstruction

inclusive B energy reconstruction from vertex flight direction and charged B decay products

 $\rm B$ energy resolution: 10%

≈4200 candidates

uncorrected scaled energy x_{wd}^{rec}

DELPHI, OPAL: inclusive B hadron reconstruction

inclusively identify and reconstruct

B hadrons from

- weak B hadron decay vertices
- leptons from weak B hadron decay
- ullet charged and neutral decay products using Artifical Neural Nets, Likelihoods (OPAL: x_{wd}^{rec} ; DELPHI: $x_{wd}^{rec},\,x_L^{rec},\,z^{rec}$)

DELPHI: B energy resolution: $\mathcal{O}(10\%)$

≈230,000 candidates

OPAL: B energy resolution: $\mathcal{O}(10\%)$

≈270,000 candidates

Example: OPAL

vertex detector hit resolution

 $10 - 15 \, \mu \mathrm{m}$

momentum resolution

$$\approx 1.1 \times 10^{-3} (\text{GeV})^{-1}$$

jet energy resolution

$$pprox 95\%/\sqrt{E}$$

Selection and reconstruction of B hadrons

- selection of b jets
- reconstruction of B decay vertex
- selection of B hadron decay products artificial neural nets identify tracks and clusters from B decays
- estimation of the B hadron energy weighted sum over all selected tracks and clusters (weight = ANN output)

reconstruction efficiency: 16% background contamination: 4% energy resolution $\approx 10\%$

Jet-wise b-tag à la OPAL Higgs searches

Track and cluster weight calculation

neural nets calculate
B hadron weights
for each track and cluster
in the hemisphere
defined by the jet axis

(Figure from Michael Thiergen)

Energy resolution

good measurement of the B hadron energy

sensitive to hadronisation models

comparison of models with data:

- tune important Monte Carlo parameters to data
- ullet reweight f(z) in Monte Carlo to desired fragmentation function
 - fit fragmentation function parameters to data

Energy distribution \iff hadronisation models

two main methods to derive information about hadronisation from the hadron energy distribution:

- ullet comparison of x_{wd} distribution with model predictions
- ullet determination of model-independent parameters of the x_{wd} distribution e.g. mean scaled energy, $\langle x_{wd} \rangle$

both methods used in all presented analyses

Results of model tests

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MC, signal
MC, charm
MC, uds+gluons

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3000

2500

Peterson

DELPHI

LEP/SLD 2001/2002: normalized $\chi^2/\text{d.o.f.}$ probabilities

same ranking seen by all experiments!!! Herwig 5/6: tested by OPAL+SLD, but disfavored THIS IS IMPORTANT INPUT FOR QCD STUDIES!

Problems with model-dependent energy spectrum fits

Fragmentation function parameters for specific models

- provide insufficient information for future model-builders
- depend strongly on (perturbative) fragmentation setup in MC
 - → difficult to transfer results to e.g. hadron collider MC but this is how it was done for Run I b cross-section measurements!

even worse:

look at description of B hadron energy distribution D(x) in terms of moments

$$D_i = \int_0^1 dx \ x^{i-1} D(x)$$

$$D_1=1$$
, $D_2=\langle x_{wd}
angle$

Problems with model-dependent energy spectrum fits

Model-dependent fragmentation function fits give good description of

 $oldsymbol{D_2}$ (mean),

 D_3 (width) of the spectrum

Modelling of higher moments is usually BAD!

Hadron colliders: $D_{4\pm 1}$ most important

do NOT fit parameters like Peterson ε and use them in hadron collider MC ...but this is how it was done for Run I b cross-section measurements!

instead:

LEP/SLD have to provide model-independent measurement of higher moments

$$D_i = \int_0^1 dx \; x^{i-1} D(x)$$

Hadronisation tuning for the Tevatron

fit hadronisation parameters to moments, not to x_{wd} shape

(M. Cacciari, hep-ph/0205326; "N=2 fit" using Kartvelishvili et al.)

Well, we (ALEPH, DELPHI, OPAL, SLD) did ...

Model-independent description of the B hadron energy spectrum

Cannot take moments from raw measured x_{wd} distribution:

- energy dependent efficiency
- finite detector resolution
- energy dependent reconstruction bias

reconstruction of the true energy distribution by unfolding

unfolding algorithms: RUN (Blobel), SVD-GURU (Kartvelishvili, Hocker) (DELPHI, OPAL) (≈ALEPH, OPAL, ≈SLD)

Unfolded scaled energy distribution (OPAL)

unfolded energy distribution with error band

subsample consistency check

Unfolding result (OPAL)

mean scaled energy of weakly decaying B hadrons:

$$\langle x_{wd} \rangle = 0.7193 \pm 0.0016 (stat)^{+0.0036}_{-0.0029} (syst)$$

dominant systematic uncertainties:

- detector resolution modeling (mainly calorimeter)
- unfolding with different MC types (detector simulation!)

```
very good agreement with second unfolding method (\langle x_{wd} \rangle = 0.7195 \pm 0.0015(stat))
```

good agreement with model fit results

Bowler $0.7207 \pm 0.0008 \pm 0.0028$,

Lund symmetric $0.7200 \pm 0.0008 \pm 0.0028$,

Kartvelishvili et al. $0.7151\pm0.0006\pm0.0021$

Plot by P. Bechtle

Overview of $\langle x_{wd} \rangle$ measurements

0.702±0.008 ← current LEP average

ALEPH (01) $B \rightarrow D^{(\bullet)} l v$ **DELPHI (02) inclusive OPAL (02) inclusive** SLD (02) inclusive

SLD (96) $B \rightarrow D^{(\bullet)} l v$ ALEPH (95) $B \rightarrow D^{(\bullet)} l v$ **DELPHI** (93) $B \rightarrow D^{(\bullet)} l v$

OPAL (99) Lepton Spec. DELPHI (95) Lepton Spec. L3 (95) B Lifetimes **OPAL** (95) E_{ch}, M_{ch} **ALEPH (94) Lepton Spec. OPAL (94) Charge Mult. OPAL** (93) Lepton Spec. L3 (91) Lepton Spec.

0.7163+0.0061+0.0056 $0.7153\pm0.0007^{+0.0049}_{-0.0052}$ (prel.) $0.7193\pm0.0016^{+0.0036}_{-0.0031}$ $0.709\pm0.003\pm0.003\pm0.002$

 $0.701\pm0.011\pm0.009\pm0.019$ $0.700\pm0.007\pm0.011\pm0.006$ $0.695\pm0.015\pm0.029$

0.7020 + 0.00440.708 + 0.0040.695±0.006±0.003±0.007 $0.714\pm0.004\pm0.005\pm0.010$ 0.693±0.003±0.030 $0.697\pm0.006\pm0.011$ 0.686±0.006±0.016

Moments of the energy distribution

values from *very* preliminary LEP/SLD combination (P. Roudeau, E. Ben Haim):

$$D_1=1~ ext{(definition)} \ \langle x_{wd}
angle = D_2=0.7151\pm 0.0025 \ D_3=0.5426\pm 0.0012 \ D_4=0.4268\pm 0.0010 \ D_5=0.3440\pm 0.0017$$

Cacciari/Nason fit to fragmentation function

...unfortunately not yet using the new LEP/SLD results (which will make the prediction slightly larger)

Cacciari/Nason fit to fragmentation function

Ratio of data and theory reduced from 2.9 to 1.7

...unfortunately not yet using the new LEP/SLD results (which will make the prediction slightly larger)

Summary

- \bigstar LEP/SLD are collecting their final b hadronization measurements
- 🌟 results compatible with older analyses, but much more precise
- 🌟 hadronization models can be clearly distinguished for the first time
- Tevatron: agreement between b cross-section prediction and measurement if these results are applied correctly

better have a e^+e^- machine complementing your favourite hadron collider! (This was the obligatory statement on a next generation linear collider.)

